Bayesian Learning of a Tree Substitution Grammar

نویسندگان

  • Matt Post
  • Daniel Gildea
چکیده

Tree substitution grammars (TSGs) offer many advantages over context-free grammars (CFGs), but are hard to learn. Past approaches have resorted to heuristics. In this paper, we learn a TSG using Gibbs sampling with a nonparametric prior to control subtree size. The learned grammars perform significantly better than heuristically extracted ones on parsing accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blocked Inference in Bayesian Tree Substitution Grammars

Learning a tree substitution grammar is very challenging due to derivational ambiguity. Our recent approach used a Bayesian non-parametric model to induce good derivations from treebanked input (Cohn et al., 2009), biasing towards small grammars composed of small generalisable productions. In this paper we present a novel training method for the model using a blocked Metropolis-Hastings sampler...

متن کامل

Inducing Tree-Substitution Grammars

Inducing a grammar from text has proven to be a notoriously challenging learning task despite decades of research. The primary reason for its difficulty is that in order to induce plausible grammars, the underlying model must be capable of representing the intricacies of language while also ensuring that it can be readily learned from data. The majority of existing work on grammar induction has...

متن کامل

Insertion Operator for Bayesian Tree Substitution Grammars

We propose a model that incorporates an insertion operator in Bayesian tree substitution grammars (BTSG). Tree insertion is helpful for modeling syntax patterns accurately with fewer grammar rules than BTSG. The experimental parsing results show that our model outperforms a standard PCFG and BTSG for a small dataset. For a large dataset, our model obtains comparable results to BTSG, making the ...

متن کامل

Native Language Detection with Tree Substitution Grammars

We investigate the potential of Tree Substitution Grammars as a source of features for native language detection, the task of inferring an author’s native language from text in a different language. We compare two state of the art methods for Tree Substitution Grammar induction and show that features from both methods outperform previous state of the art results at native language detection. Fu...

متن کامل

Inducing Compact but Accurate Tree-Substitution Grammars

Tree substitution grammars (TSGs) are a compelling alternative to context-free grammars for modelling syntax. However, many popular techniques for estimating weighted TSGs (under the moniker of Data Oriented Parsing) suffer from the problems of inconsistency and over-fitting. We present a theoretically principled model which solves these problems using a Bayesian non-parametric formulation. Our...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009